Công nghệ in 3d là gì? Các công bố khoa học về Công nghệ in 3d
Công nghệ in 3D (hoặc còn gọi là in ba chiều) là một phương pháp sản xuất đối tượng vật lý bằng cách xây dựng chúng từ các lớp vật liệu liên tiếp được đặt chồng...
Công nghệ in 3D (hoặc còn gọi là in ba chiều) là một phương pháp sản xuất đối tượng vật lý bằng cách xây dựng chúng từ các lớp vật liệu liên tiếp được đặt chồng lên nhau. Quá trình in 3D thường bắt đầu bằng việc tạo ra một mô hình ba chiều của đối tượng cần in bằng phần mềm đồ họa hoặc máy quét 3D. Sau đó, máy in 3D sẽ hoạt động bằng cách đặt lòng cắt của vật liệu (thường là nhựa, kim loại hoặc sợi tổng hợp) thành từng lớp liên tiếp cho đến khi đối tượng hoàn chỉnh được tạo ra. Công nghệ in 3D có thể được áp dụng trong nhiều lĩnh vực như công nghiệp, y tế, nghệ thuật và xây dựng.
Công nghệ in 3D sử dụng các quy trình và thiết bị đặc biệt để tạo ra các vật thể có hình dạng phức tạp và chi tiết cao. Dưới đây là quy trình thông thường để thực hiện in 3D:
1. Tạo mô hình 3D: Đầu tiên, một mô hình 3D của đối tượng cần in được tạo ra. Có thể tạo mô hình bằng cách sử dụng phần mềm thiết kế 3D hoặc máy quét 3D. Mô hình này đại diện cho hình dạng và các thuộc tính của vật thể cuối cùng.
2. Chuẩn bị tệp in: Mô hình 3D được chuyển đổi thành một tệp in 3D đặc biệt, như STL, AMF hoặc OBJ. Tệp in này chứa thông tin về các lớp và hình dạng của vật thể, được sử dụng để hướng dẫn quá trình in của máy in 3D.
3. Chuẩn bị vật liệu in: Máy in 3D sử dụng các loại vật liệu khác nhau tùy thuộc vào loại máy và ứng dụng. Có thể sử dụng nhựa, kim loại, sợi tổng hợp, gỗ, thậm chí thức ăn để tạo ra các đối tượng in 3D.
4. Quá trình in: Mô hình 3D và tệp in được nạp vào máy in 3D. Máy tính điều khiển máy in 3D di chuyển và kiểm soát đầu phun hoặc laser để đặt tới các lớp vật liệu liền kề nhau. Áp dụng vật liệu từng lớp lên nhau dẫn đến việc xây dựng từng lớp để tạo thành đối tượng cuối cùng. Các lớp vật liệu được kết dính lại với nhau để tạo thành cấu trúc chắc chắn.
5. Hoàn thiện và hoàn chỉnh: Sau khi quá trình in hoàn tất, sản phẩm in 3D cần thông qua các bước hoàn thiện tiếp theo. Các bước này có thể bao gồm làm sạch, mài mượt bề mặt, sơn, hoặc bất kỳ công đoạn chức năng hoặc thẩm mỹ nào khác để đạt được thành phẩm cuối cùng.
Công nghệ in 3D mang lại nhiều lợi ích, bao gồm khả năng tạo ra các hình dạng phức tạp, tùy chỉnh và độ chính xác cao, giảm thời gian sản xuất, giảm số lượng chất thải và tạo ra các sản phẩm có hiệu suất tốt hơn. Nó được áp dụng trong các ngành công nghiệp từ sản xuất và y tế đến nghệ thuật và giáo dục.
Danh sách công bố khoa học về chủ đề "công nghệ in 3d":
Bệnh van tim là một vấn đề sức khỏe cộng đồng nghiêm trọng và ngày càng gia tăng, trong đó việc thay thế bằng bộ phận giả là điều thường thấy. Các thiết bị giả hiện tại không đủ tốt cho người lớn trẻ tuổi và trẻ em đang phát triển. Các kênh van động mạch chủ sống được thiết kế mô có tiềm năng để tái cấu trúc, tái tạo, và phát triển, nhưng việc chế tạo độ phức tạp giải phẫu tự nhiên với tính không đồng nhất của tế bào vẫn còn là thách thức. Trong nghiên cứu hiện tại, chúng tôi áp dụng công nghệ sinh học in 3D để chế tạo các kênh van bằng chất dẻo alginate/gelatin sống với cấu trúc giải phẫu và việc kết hợp trực tiếp các loại tế bào kép theo cách bị hạn chế vùng. Các tế bào cơ trơn xoang gốc động mạch (SMC) và tế bào mô liên kết của nắp van động mạch (VIC) được bao bọc trong các đĩa hydrogels alginate/gelatin có khả năng sống qua 7 ngày trong môi trường nuôi cấy. Các hydrogels không có tế bào in 3D thể hiện sự giảm xu hướng, sức mạnh tối đa, và ứng suất tối đa giảm nhẹ trong suốt thời gian nuôi cấy 7 ngày, trong khi sinh học cơ học kéo của hydrogel chứa tế bào vẫn được duy trì. Các kênh van động mạch được in sinh học thành công với sự bao bọc trực tiếp SMC ở gốc van và VIC ở các nắp. Cả hai loại tế bào đều có khả năng sống (81,4 ± 3,4% đối với SMC và 83,2 ± 4,0% đối với VIC) trong các mô được in 3D. Tế bào SMC bao bọc biểu hiện mức alpha‐sợi cơ trơn cao, trong khi VIC biểu hiện mức vimentin cao. Những kết quả này chứng minh rằng các kênh van động mạch sống có độ phức tạp giải phẫu và bao bọc không đồng nhất có thể được chế tạo bằng công nghệ sinh học in 3D. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Phần A, 2013.
Có thể sản xuất các hydrogel 3D tùy ý và siêu chính xác với độ phân giải cao trên quy mô vi mô/nano thông qua vi chế tạo polymer hóa hai photon như một công nghệ in 3D tiên tiến.
Các tiến bộ gần đây trong công nghệ in 3D đã cho phép tạo ra các mô hình ba chiều và thiết bị mới với mức độ phức tạp, thuộc tính và chức năng chưa từng có. Khác với các kỹ thuật sản xuất được phát triển cho sản xuất hàng loạt, công nghệ in 3D bao gồm một lớp rộng các công nghệ chế tạo có thể cho phép 1) tạo ra các kiến trúc vật lý 3D được tùy chỉnh và tối ưu hóa cao từ các thiết kế kỹ thuật số; 2) tích hợp đồng bộ các thuộc tính và chức năng của các loại vật liệu khác nhau để tạo ra các thiết bị lai mới; và 3) một phương pháp chế tạo tương thích sinh học giúp tạo ra và đồng tích hợp các cấu trúc và hệ thống sinh học. Báo cáo tiến bộ này mô tả cách mà những khả năng này có thể giải quyết nhiều nhu cầu lâm sàng chưa được đáp ứng. Thứ nhất, việc tạo ra các bộ phận giả in 3D để khôi phục các chức năng đã mất bằng cách cung cấp hỗ trợ cấu trúc cho các cơ quan xương và ống được nhấn mạnh. Thứ hai, các chiến lược phân phối thuốc mới được hỗ trợ bởi các thiết bị in 3D được mô tả. Thứ ba, sự tiến bộ của nghiên cứu y học được đánh dấu bởi hệ thống mô/tổ chức trên vi chip in 3D được thảo luận. Thứ tư, những phát triển trong sự tái tạo mô và cơ quan in 3D được khám phá. Cuối cùng, khả năng tích hợp liền mạch các cơ quan thiết kế với các thiết bị hoạt động bằng cách tận dụng tính linh hoạt của công nghệ in 3D đa vật liệu được dự đoán.
- 1
- 2
- 3
- 4
- 5